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We propose to reconsider the diffusion of atoms in the Knudsen regime in terms of a complex dynamical
reflection process. By means of molecular dynamics simulations, we emphasize the asymptotic nature of the
cosine law of reflection at the atomic scale, and carefully analyze the resulting strong correlations in the
reflection events. A dynamical interpretation of the accommodation coefficient associated with the slip at the
wall interface is also proposed. Finally, we show that the first two moments of the stochastic process of
reflection depend nonuniformly on the incident angle.

DOI: 10.1103/PhysRevE.77.021202 PACS number�s�: 47.45.Ab, 68.43.Jk, 83.10.Rs

A century ago, Knudsen proposed a model describing the
diffusion of dilute gases through cylindrical pores �1�. The
mean free path of the molecules being larger than the pore
size, the transport properties are essentially driven by the
collisions with the wall. In the Knudsen approach, based on
the kinetic theory of gases, all rebounds were assumed to be
governed by the diffusive Lambert cosine law of reflection
�2�. Later, the model was improved by Smoluchowski who
proposed, using Maxwell’s theory, that only a fraction f of
rebounds were diffuse, while the remaining 1− f were specu-
lar �3�. The physical situations addressed by these authors
gained renewed interest due to the emerging applications in
gas separation �4� and catalysis by means of new porous
materials �5�. In order to achieve efficient processes a thor-
ough understanding of the mechanisms involved in the trans-
port of gas through a porous membrane is required �see Ref.
�6� for a recent review�. This problem has essentially been
addressed by two distinct types of numerical simulation: bil-
liardlike simulations �BLSs� and molecular dynamics �MD�.
In the first, the gas-wall interaction is introduced through ad
hoc laws of reflection, disregarding microscopic mecha-
nisms. Therefore, BLSs are more appropriate to describe the
impact of the pore geometry on the transport properties at a
macroscopic scale �7–9�. In MD, microscopic interactions
are properly considered, the cost being a limitation in the
spatial and time scales investigated by the simulations
�10–12�.

To combine the advantages of both kinds of simulation,
one could extract from MD the realistic reflection law that
would be finally incorporated in a BLS. A first step in this
direction has recently been made by Arya et al. �13�. Using
MD, these authors quantified the relationship between the
phenomenological coefficient f and the parameters of the
Lennard-Jones potential describing gas-wall interactions,
namely, the wall structure and the interaction energy. None-
theless, a realistic way of introducing f in a BLS has not
been achieved yet.

In this paper we propose to fill the gap between MD and
BL simulations. First, we show the robustness of the cosine

law by successfully testing it against MD results. Then the
velocity distribution functions are analytically derived and
successfully compared to numerical results. We reexamine
the cosine law of reflections, emphasizing its asymptotic na-
ture. Through a careful analysis of the correlations between
consecutive reflection events, we establish a relation between
f and the range of the dynamical correlations. Finally, we
present an analysis of the reflection law in terms of a com-
plex stochastic process.

We use MD simulations to describe the trajectory of a
particle through a two-dimensional slit pore, taking into ac-
count the atomistic structure of the walls �see Fig. 1�. The
equations of motion are integrated through a standard Verlet
algorithm �14� with periodic boundary conditions in both
directions. The two different interaction potentials, between
the atoms composing the wall and between the diffusing par-
ticle and the atoms, are of the Lennard-Jones type: V�r�
=4���� /r�12− �� /r�6�. We use a shifted force potential to
guard against energy and force discontinuities at the cutoff
radius rc=2.5� �14�. For both potentials �=1; for interac-
tions between the wall atoms �=1 while � takes values rang-
ing from 0.005 to 0.5 for the particle-atom potential. The
mass of the atoms is fixed to m=1. As a consequence,
lengths, energies, and masses are respectively expressed in
units of �, �, and m, and times in units of �=m0.5��–0.5.

The walls are composed of 141 atoms arranged in a tri-
angular structure �see Fig. 1�; the height of the pore is fixed
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FIG. 1. Snapshot of the simulated system where a rebound event
is schematically depicted. The dotted line shows the border between
the ballistic and interacting regions.
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to 6�. Since the potential is of finite range, we can easily
define the ballistic region, in the central part of the pore,
where the diffusing particle does not interact with the walls.
To characterize the “rebounds” we therefore record the par-
ticle positions and velocities at the borders of this region �see
Fig. 1�. The Boltzmann constant is set to unity and the tem-
perature, expressed in units of energy, is fixed to T=0.15, a
value for which the solid phase of the wall is stable. Once the
system is in thermal equilibrium we perform simulations in
the microcanonical ensemble. A typical run consists of 3
�109 time steps ��t=10−3� during which we roughly com-
pute from 105 to 4�105 rebounds on the walls, depending
on the value of �.

The probability density function of the reflection angles
���� obtained numerically through an averaging over 2
�105 bounces and for �=0.1 is shown in Fig. 2. Our numeri-
cal results confirm the expected cosine law of reflection:

����d� =
1

2
cos � d�, ��sin ��d sin � =

1

2
d sin � . �1�

The same remarkable agreement is observed for all the val-
ues of � used in our simulations, showing the robustness of
the cosine law. It is worth noting that relation �1� represents
an asymptotic law �time t→�� which does not preclude cor-
relations between successive angles of reflection. One can
even obtain such “ergodic” behavior with a purely specular
law of reflection, for a nontrivial geometry of the surround-
ing walls. Indeed, in the limiting case of billiard problems,
which constitute paradigmatic examples of Hamiltonian
chaos, one generically obtains the cosine law of reflection,
whereas incident and reflected angles are specularly related
�15�. The role of short-time correlations between angles of
reflection, which cannot be neglected, will be addressed in
detail in the last part of the paper.

We use the cosine law as the starting point to derive ana-
lytically the other distribution functions describing the mo-
tion of the diffusing particle in the ballistic zone. As ex-
pected, our simulations show that the velocity component
parallel to the surface, vx=v sin �, is a Gaussian random

variable with variance given by the fixed temperature �for
simplicity, the mass of the particle is 1�:

�x�vx� =
1

�2	T
exp�−

vx
2

2T
� . �2�

The velocity can be described by two sets of random vari-
ables �vx ,vy� or �v , sin ��, whose distributions are related by

��v,sin �� = � ��vx,vy�
��v,sin ��

���vx,vy� =
v

cos �
��vx,vy� . �3�

We numerically checked that vx and vy �or, equivalently,
v and sin �� are independent random variables: ��vx ,vy�
=�x�vx��y�vy� ���v , sin ��=�v�v����sin ���. Thus, the distri-
bution �y can be obtained from the probability density of the
modulus �v�v�=	−1

1 d�sin ����v , sin ��. From the normaliza-
tion constraint 	0

�dv �v=1 one indeed obtains



−1

1

d�sin ��

0

�

dv
v��v cos ��

cos �
exp�−

v2 sin2 �

2T
� = �2	T ,

�4�

where we used the Maxwell-Boltzmann distribution
�2�. The solution of �4� is given by ��v cos ��= �v cos � /T�
�exp�−v2 cos2 � /2T�. Finally, we can assume for vy the fol-
lowing distribution:

�y�vy� =
vy

T
exp�−

vy
2

2T
� . �5�

Due to the nonsymmetric interactions experienced by the
particle in the y direction, the corresponding velocity distri-
bution �5� differs qualitatively from �2�. Recall that �5� is
fully compatible with the diffuse law of reflection �1�. A
similar expression to �5� was phenomenologically obtained
by Arya et al. �13�.

Knowing �x and �y, we are now able to write the explicit
form of �v:

�v�v� =� 2

	

v2

T3/2exp�−
v2

2T
� . �6�

As expected from �5�, it is clear that the modulus v does not
obey the standard two-dimensional Maxwell distribution.1 As
expected from a microcanonical system, the motion of the
particle in the ballistic zone and the walls is characterized by
a Maxwellian velocity distribution. Expression �6� is suc-
cessfully tested against the simulation results as shown in
Fig. 3. Here again the agreement is quite remarkable what-
ever the values of �. For comparison the two-dimensional
�2D� Maxwell distribution is also shown in Fig. 3. Note that
the mean value �v�=�8T /	 deduced from �6� is around 20%
smaller than the Maxwell mean value �vm�=�	T /2. We want
to draw attention to the fact that distribution �6� should be
used in BLSs of Knudsen diffusion. Indeed, the commonly

1For a 3D problem, we would have obtained �v�v�
= �v3 /2T2�exp�−v2 /2T�.
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FIG. 2. Probability density function of the rebound angle. Simu-
lation data �circles� obtained for �=0.1 are in complete agreement
with the expected cosine law �1� �full line�. The same agreement is
observed whatever the value of �.
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used Maxwell distribution leads to an underestimate of the
diffusion constant.

We now turn to a thorough analysis of correlations be-
tween successive reflected angles in order to understand how
the cosine law of reflection is asymptotically attained. We
thus define the following function:

C�n� = 1 −
���p + �− 1�n+1�p+n�2�p

�	2/2� − 4
. �7�

C�n� gives a measure of the correlation between two angles
of reflection separated by n rebounds of the particle on the
walls. By construction, C�n�=1 for a pure specular regime of
reflections and C�n�=0 in the diffusive regime. The evolu-
tion of C�n� for three values of � is shown in Fig. 4. We
observe that the expected convergence toward the diffusive
limit as n increases is observed. We numerically verified that
the mean resident time of the particle inside the interacting
region increased with �. As a consequence, one can see in
Fig. 4 that the rate of convergence to C=0 increases with
larger �. But it is worth noting that C�n� exhibits nonzero
values for a significant number of bounces. The correlation
functions exhibit an exponential behavior C�n�=exp�−n /nc�,
where the characteristic number of rebounds nc gives the
range of the correlation: two angles of reflection separated by

a small number of rebounds greater than nc are uncorrelated.
For the correlation functions shown in Fig. 4, nc varies from
0.23, for the largest value of �, to 2.92, for the smallest. Such
a large number of “nondiffusive” �or “quasispecular”� re-
bounds may drastically alter the transport process. This is
what was phenomenologically taken into account in the
Smoluchowsky model �3� by introducing fractions f and 1
− f of atoms having diffuse and specular rebounds, respec-
tively. This fraction f is called the tangential momentum ac-
commodation coefficient and can be related to the slip coef-
ficient at the wall �3,16�. Our approach gives an insight into
the microscopic dynamics that generates the observed mac-
roscopic behavior and provides an interpretation of the phe-
nomenological coefficient. In order to mimic the observed
correlations, one can indeed imagine a more realistic BLS
where nc rebounds are specular, after which the next rebound
is diffuse and followed by another nc specular rebound.
Thus, the accommodation coefficient can be viewed as the
inverse of the characteristic number of rebounds: f 1 /nc.

Let us now focus on C�1�, which quantifies the loss of
memory after a single bounce. The inset in Fig. 4 shows the
evolution of this “instantaneous” correlation function with
the strength of the potential. Even for the smallest value of �
the reflection is never truly specular �in this case C�1�=1�
due to the atomic structure of the wall. As expected, for
increasing values of � C�1� vanishes, indicating a complete
randomization of the reflection events. This is clearly illus-
trated by looking at the motion of the particle for �=0.1,
where the absence of correlations between incident and re-
flected angles is evident �see �17�, video 1�. Note that the
diffusive behavior stems from the fact that for almost all
rebounds the particle experiences, in the interacting zone,
multiple collisions with wall atoms. This is no longer the
case for �=0.01 �see �17�, video 2� where a unique collision
event generates the rebound.

Since the reflected angle is never completely diffusive or
specular but something in between, the important quantity to
know is the conditional probability ����r��i� of rebounding
with an angle �r, the incident angle �i being fixed. If we want
to focus on the deviation from the specular regime, it is
convenient to write �r=−�i+�� and therefore express the
conditional probability as a set of distributions ��i

����. We
computed �����i�� and �����i�2�, the first and second mo-
ments of these distributions, and plot it for different values of
� in Fig. 5. In the case of a purely diffusive reflection, we
expect

�����i�� = �i, �8�

�����i�2� = �i
2 + 	2/4 − 2. �9�

As shown in Fig. 5, the diffusive behavior is recovered for
the most attractive potential ��=0.5� considered in this study.
The opposite case of purely specular reflections, character-
ized by �����i��=0 and �����i�2�=0, is never reached. In-
deed, as discussed above when interpreting the fact that
C�1��1 even for �→0, the wall structure precludes the
emergence of a purely specular regime. In the intermediate
regimes ��=0.05,0.005�, one can see that both moments
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FIG. 3. Probability density function of the velocity modulus.
Circles are simulation data; the full and dotted curves correspond,
respectively, to �v�v� given in �6� and to the Maxwell distribution.
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FIG. 4. Correlation function C�n� represented for different val-
ues of �. Circles, diamonds, and squares correspond to �=0.005,
0.02, and 0.1. Inset: C�1� is plotted as a function of �.
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nonuniformly depend on the incident angle, the nongeneric
behavior being more important for the largest incident
angles. Thus, we demonstrate here that the correlations be-
tween two successive rebounds are quantitatively sensitive to

the value taken by the first rebound. We are currently devel-
oping an analytical description of such a complex behavior
in the choice of the reflected angle in an improved BLS
scheme.

In this paper, we have proposed additional insight into the
so-called cosine law of reflection by means of MD simula-
tions. We confirmed its validity at the atomic scale whatever
the strength of the gas-wall interaction, but only as an
asymptotic law. We examined two crude “ergodic” approxi-
mations in the studies of Knudsen diffusion, which �i� as-
sume Maxwell velocity distribution functions and �ii� neglect
the correlations between consecutive rebounds. We gave the
correct distributions, Eqs. �5� and �6�, actually involved in
the Knudsen regime. By defining an appropriate correlation
function �7�, we carefully analyzed the strong correlations
occurring in the dynamical process of reflection. We revealed
a characteristic correlation rebound number nc that has been
linked to the commonly used accommodation coefficient f .
Finally, we performed the complete characterization of the
stochastic rebound process and emphasized the nontrivial de-
pendence of the conditional probability ����r��i� on the inci-
dent angle. This work should pave the way for new studies of
Knudsen transport using improved BLS schemes as proposed
in this paper.
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FIG. 5. First and second �inset� moments of the distributions
��i

����. The full lines correspond to the purely diffusive regime.
Circles, diamonds, and triangles correspond, respectively, to �
=0.005, 0.05, and 0.5.
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